
Operations Research Letters 50 (2022) 655–659

Contents lists available at ScienceDirect

Operations Research Letters

www.elsevier.com/locate/orl

A greedy algorithm for finding maximum spanning trees in infinite

graphs

Christopher Thomas Ryan a,∗, Robert L. Smith b

a UBC Sauder School of Business, 2053 Main Mall, Vancouver, British Columbia, V6M 3W2, Canada
b University of Michigan, Industrial and Operations Engineering, 1205 Beal Ave., Ann Arbor, MI, 48109-2117, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 February 2022
Received in revised form 5 October 2022
Accepted 10 October 2022
Available online 13 October 2022

Keywords:
Spanning trees
Infinite graphs
Infinite-dimensional optimization

In finite graphs, greedy algorithms are used to find minimum spanning trees (MinST) and maximum
spanning trees (MaxST). In infinite graphs, we illustrate a general class of problems where a greedy
approach discovers a MaxST while a MinST may be unreachable. Our algorithm is a natural extension
of Prim’s to infinite graphs with summable and strictly positive edge weights, producing a sequence of
finite trees that converge to a MaxST.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The minimum weight spanning tree (MinST) problem on finite
graphs is a classic combinatorial optimization problem. The MinST
problem has numerous applications [15,17,18,22], including as a
subroutine in other algorithms on graphs [3] and heuristics [12,26].
MinST problems are also popular because they admit simple-to-
implement “greedy algorithms” that solve the problem efficiently.
In this paper, we consider the maximum spanning tree (MaxST)
problem for countably infinite graphs which can be viewed as
models for underlying problems with indefinitely large graphs. We
will present a greedy algorithm that arbitrarily well approximates
a MaxST which will be shown to always exist. As we shall see,
both of these claims fail for the MinST case for infinite graphs.

To an uninitiated researcher, one may be naturally presented
with a maximum weight spanning tree (MaxST) problem instead of
a minimum and search the literature in vain to find solutions to
this problem. The reason is not that the MaxST problem is diffi-
cult or unstudied, instead, it is because it is easily converted to a
MinST by reversing the signs of the edge weights and minimizing.
Unlike the difference between the minimum capacity cut (MinCut)
problem and the maximum capacity cut (MaxCut) problem (the
minimum cut problem is well known to be the dual of the maxi-
mum flow problem, which is polynomially solvable in finite graphs,
whereas the maximum cut problem is NP-hard to both solve and

* Corresponding author.
E-mail addresses: chris.ryan@sauder.ubc.ca (C.T. Ryan), rlsmith@umich.edu

(R.L. Smith).
https://doi.org/10.1016/j.orl.2022.10.004
0167-6377/© 2022 Elsevier B.V. All rights reserved.
approximate), the differences between the MinST problem and the
MaxST problem on finite graphs are entirely cosmetic.

In this paper, we show that the situation can be completely
different in infinite graphs. We consider a class of graphs with
countably many nodes, and each node has at most finitely many
incident edges. Moreover, we assume the edge weights are positive
and the sum of weights is finite. In this setting, a greedy approach
can be used to find a MaxST but a MinST may not even exist. If
a MinST does exist, it may be unreachable by a greedy approach.
Since edge weights are summable, they converge to zero towards
the “outskirts” of the graph. Intuitively, a MinST may be unreach-
able by a greedy approach as we search in these “outskirts” for
lighter and lighter edges and get “indefinitely distracted” without
returning to explore other regions of the graph to form a span-
ning tree. By contrast, a MaxST can safely ignore the “outskirts” of
light-weight edges until trees are greedily constructed on a grow-
ing family of finite subgraphs leading, eventually, to a MaxST.

More concretely, our greedy approach for computing a MaxST
is a straightforward extension of Prim’s algorithm applied to infi-
nite graphs. When the graph has summable and strictly positive
edge weights, it produces a sequence of spanning trees on finite
subgraphs that converge to a MaxST in the limit (we make the
notion of convergence precise later in the paper). Such solution
convergence is a rare outcome in infinite-dimensional optimization
problems where convergence to the optimal solution is usually dif-
ficult to guarantee.

To our knowledge, there are only two previous papers—[23] and
[20]—that study the problem of constructing MinSTs and MaxSTs
in infinite graphs (in fact, they study the problem in the more
general setting of infinite matroids). These papers, however, gener-

https://doi.org/10.1016/j.orl.2022.10.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2022.10.004&domain=pdf
mailto:chris.ryan@sauder.ubc.ca
mailto:rlsmith@umich.edu
https://doi.org/10.1016/j.orl.2022.10.004

C.T. Ryan and R.L. Smith Operations Research Letters 50 (2022) 655–659
alize Kruskal’s algorithm to the infinite setting, whereas we extend
Prim’s algorithm. While their approach can also find MaxSTs in our
setting (we describe how their ideas can be applied to our setting
in Section 4), our approach has two advantages over Kruskal’s ap-
proach.

These two advantages are (i) a generalized Prim’s approach re-
quires significantly less data about the graph at each iteration, and
(ii) the iterates of Prim’s algorithm are trees and therefore consti-
tute optimal solutions of MaxSTs on finite subgraphs of the original
graph. By contrast, the iterates of a generalized Kruskal’s approach
are typically forests and not trees. This distinction can be impor-
tant in applications of spanning tree problems—like establishing
communication links along edges from a source to nodes—where
disconnected partial solutions lead to links that are not connected
to the source. These two advantages are explored in more detail in
Section 4.

It is also worth noting that there is extensive literature on al-
gorithms on infinite graphs in other contexts (see, for instance,
[2,5,13,21]). Several references examine the properties of spanning
trees in the limit of finite random graphs (see, for instance, [1,4]),
but these graphs enjoy special properties conferred by Poisson spa-
tial processes.

The rest of the paper is organized as follows. In Section 2, we
formally introduce the problem of finding minimum and maximum
weight spanning trees and state our key assumptions. In Section 3,
we discuss greedy algorithms for solving the minimum-weight and
maximum-weight spanning tree problems, emphasizing the differ-
ences between the two. There we show our main result: a Prim’s
algorithm always finds a MaxST in the limit. Section 4 provides
more detail on how our work relates to the earlier studies of [23]
and [20].

2. The minimum and maximum spanning tree problems

We begin by introducing the general class of infinite graphs we
consider.

2.1. Basic definitions

Let G = (V, E) denote an undirected graph, with node set
V = {1, 2, . . . } and edge set E, which is a subset of all possible
unordered pairs {i, j}, where i, j ∈V with i �= j. The graph has an
edge-weight function w : E →R where we denotes the weight of
edge e ∈ E.

Let I(i) denote the set of nodes adjacent to node i; that is,
I(i) := { j ∈V : {i, j} ∈ E}. The degree of node i in G is the cardinal-
ity of I(i). A graph is locally finite if every node has finite degree. A
path in G is a finite sequence of distinct nodes i1, i2, . . . , in , where
{ik, ik+1} ∈ E for k = 1, . . . , n − 1. A ray is an infinite sequence of
distinct nodes i1, i2, . . . , where {ik, ik+1} ∈ E for k = 1, 2, Two
nodes i and j are connected in G if there exists a path starting
with node i and ending with node j. The graph G is connected if
all nodes i and j in G are connected. We make the following as-
sumption throughout the paper.

Assumption 1. The graph G is locally finite and connected. �

The results in this paper hold if local finiteness is relaxed, but
for ease of exposition we stick with this assumption. Indeed, much
of infinite graph theory is examined in the locally finite case,
which is easier to visualize (see, for instance, Chapter 8 in [13]).

A cycle in G is a finite sequence of nodes i1, i2, . . . , in, i1, where
i1, i2, . . . , in is a path and {i1, in} ∈ E. A double ray consists of
a node i with two distinct rays, that is, rays (i, i1, i2 . . .) and
(i, j1, j2, . . .), where all intermediate nodes ik and j� are distinct
for all k and �.
656
Let H be a subgraph of G and let V(H) and E(H) denote the
set of nodes and edges in H , respectively. In this paper, we restrict
our attention to subgraphs with no isolated nodes; that is, for ev-
ery node i ∈V(H) there exists an edge {i, j} ∈ E(H) for some node
j ∈V(H). Throughout we often refer to a subgraph H by its set
E(H) of edges since the set of nodes is implicit once the edges
are defined due to this restriction on the types of subgraphs we
consider.

A forest F of G is an acyclic subgraph of G; i.e., a subgraph of
G without cycles. A connected forest is a tree. If a subgraph of G
has node set V, it is said to span G . A connected spanning forest
of G is called a spanning tree. The set of all spanning trees of the
graph G is denoted T .

Remark 1. Other papers that study infinite graphs may define trees
differently. For instance, the papers [24,25] study network flow
problems on directed graphs. They say two nodes i and j are con-
nected at infinity if both lie on directed rays to infinity, even if there
is no finite path between these nodes. These papers talk about
trees as graphs that do not contain either cycles or double rays,
but allow connectivity “at infinity” between nodes. By contrast,
our trees allow double rays (while disallowing cycles) but must
be (finitely) connected. For a detailed discussion of the different
definitions of spanning trees in infinite graphs, see [14]. �

2.2. On the existence of spanning trees

We now turn to our problems of interest. The weight w(T) of a
spanning tree T of G is the sum of the weights of the edges of T ,
i.e.,

w(T) �
∑

e∈E(T)

we. (1)

We first define the more commonly stated problem of finding a
minimum-weight spanning tree of G , i.e., solve

wmin � min{w(T) | T ∈ T }. (MinST)

We call any optimal solution of problem (MinST) a minimum
spanning tree (MinST). A closely related problem is solving the
maximum-weight spanning tree problem, i.e., solve

wmax � max{w(T) | T ∈ T }. (MaxST)

We call any optimal solution of problem (MaxST) a maximum
spanning tree (MaxST).

These problems may not be well-defined if either the graph
has no spanning trees or spanning trees of minimum or maximum
weight do not exist. Regarding the existence of spanning trees, the
following classical result shows they always exist in our setting.

Proposition 1 (Proposition 8.1.1 in [13]). Any graph that is locally finite
and connected (Assumption 1) contains a spanning tree.

Although spanning trees exist, there may be no lower bound
on their weight. It is straightforward to construct an infinite graph
with an infinite sequence of spanning trees with strictly decreas-
ing weights when the graph admits edges with negative cost.
Another worrying setting is one where all spanning trees have in-
finite weight, which happens when the weights of edges are not
“controlled” in some way. In this case, all spanning trees are de-
generately both “minimal” and “maximal”, making the MinST and
MaxST problems uninteresting. We make the following assumption
throughout to avoid these exceptions.

C.T. Ryan and R.L. Smith Operations Research Letters 50 (2022) 655–659
Fig. 1. A graph with a MaxST but no MinST (see Example 1).

Assumption 2. The weight function w : E → R has we > 0 for all
e ∈ E and

∑
e∈E we < ∞. �

If we label the countably many edges in E by w� for � =
1, 2, . . . , then Assumption 2 becomes w = (w1, w2, . . .) ∈ �1
(where �1 is the vector space of absolutely summable sequences)
with w > 0.

Later, we show that this assumption (combined with Assump-
tion 1) suffices to establish the existence of a MaxST. However, the
following example illustrates that a MinST may not exist.

Example 1. Consider the infinite ladder graph in Fig. 1, with top
and bottom rays of decreasing weight edges connected by infinitely
many rungs with decreasing weights. The MaxST has weight 3,
consisting of the left-most rung of weight 1 connecting the top
and bottom rays of the ladder (each of which has weight 1). A
spanning tree of weight 2 1/4 is drawn in non-dashed edges in
the figure. One can similarly construct spanning trees of weight
2 1/8, 2 1/16, etc. Thus, there is a sequence of spanning trees whose
weights converge to 2. However, no spanning tree has weight 2 or
less. Therefore, a MinST does not exist. �

3. Greedy algorithms

We just provided an example where a MinST may not exist in a
graph that satisfies Assumptions 1 and 2. In Section 3.1, we show
that even when a MinST does exist, it may not be discoverable by
an infinite extension of Prim’s algorithm. Later in Section 3.2, we
show that a MaxST always exists and can be found using Prim’s
algorithm.

3.1. Greedy algorithms for minimum spanning trees

There are multiple greedy approaches to finding MinSTs in fi-
nite graphs, including algorithms attributed to Prim, Kruskal, and
Sollin (see, for instance, Chapter 13 of [3]). In the infinite case,
these algorithms perform differently. For instance, Kruskal’s algo-
rithm seeks a minimum-weight edge in the entire graph in the
first iteration. Not only does identifying a minimum-weight edge
in an infinite graph require infinite work, but the operation may
not even be well defined since the minimum of edge weights need
not exist. By contrast, each iteration of the natural extension of
Prim’s algorithm to infinite graphs is finitely implementable since
it always considers finitely-many edges in each iteration, as we de-
tail now.

Algorithm 1 Prim’s algorithm for MaxST (resp. MinST) in spanning
trees in infinite graphs.
1: Input: A locally finite and connected graph G = (V, E) with edge weights.
2: Initialize: Initialize a tree T with one node, chosen arbitrarily from G .
3: while T is not spanning do
4: Append an edge: Append to T the maximum-weight (resp minimum-weight)

edge emanating from T (that is, having one node in T and one outside of T).

Prim’s algorithm (stated in Algorithm 1) produces a sequence of
non-spanning finite trees {T n}, one for each pass of the while loop,
657
Fig. 2. A graph satisfying Assumptions 1 and 2 where a MinST exists that cannot be
found by Prim’s algorithm (see Example 2).

where T 1 is the initial single-node tree, T 2 is the tree at the end
of the first iteration of the while loop, etc. The algorithm is finitely
implementable since each iterate has finitely many nodes, and so
because each node has finite degree, only finitely many edges need
to be considered when finding the maximum or minimum weight
edge.

The challenge with Prim’s algorithm is that the limiting tree it
creates may not be spanning.

Example 2. Consider the graph in Fig. 2. The graph itself is a span-
ning tree with total weight (1 + 1/2 + 1/4 + · · ·) + (1/3 + 1/9 +
· · ·) = 2 1/2. Hence, the minimum-weight spanning tree is unique
with weight 2 1/2. However, if Prim’s algorithm is started with, for
example, the lower-left node, it fails to span all nodes in the graph.
Indeed, at every iteration, it adds the next horizontal edge avail-
able, and never adds any of the vertical edges. �

3.2. A greedy algorithm for maximum spanning trees

We now show that Prim’s algorithm always finds a MaxST in
any graph satisfying Assumptions 1 and 2.

Theorem 1. Let G be an infinite graph that is locally finite and connected
(Assumption 1) and has positive and summable weights (Assumption 2).
Let T n be the nth tree generated by Prim’s algorithm for a maximum
weight spanning tree and let

T ∗ =
∞⋃

n=1

T n, (2)

where the operator ∪ merges nodes and edges. The subgraph T ∗ is a
MaxST. In particular, the graph G has a MaxST.

Proof. First, we claim that T ∗ is a forest. Observe that T ∗ has no
finite cycles since any finite cycle of T ∗ would eventually be con-
tained in T n while T n being a tree is acyclic. This implies that T ∗
is a forest.

Second, it is straightforward to see that T ∗ is connected. Let i
and j be two arbitrary nodes in T ∗ . Let ni be the smallest value
of n such that i is in T n . Define n j similarly. Without loss, assume
ni < n j . At iterations n j , there is a node k in tree T n j−1 so that
{k, j} ∈ T n j . If k = i then we are done. Otherwise, since the iterates
of Prim’s algorithm are a growing sequence of trees, i is a node in
T n j−1. Moreover, since T n j−1 is connected, there is a path P from
i to k in T n−1. Then P ∪ {k, j} is a path connecting i and j.

Third, we observe that T ∗ is a spanning tree by arguing that
every node i in G is in T n for some n. Suppose not for node i; i.e.,
i is not in T n for any n. Let Pi be a finite path in G from node
1 to node i. Let i∗(i) be the last node along this path that lies in
T ∗ . The weight of the edge out of node i∗(i) along the path to i is
strictly greater than 0 by assumption and was eligible to be added
to T n for sufficiently large n but was not. However, the weights of
edges added to T n decrease to 0. This contradicts the requirement
to add the largest weight edge to T n in step 4 of Prim’s algorithm.

Fourth, we show that T ∗ has maximum weight. Let S be any
spanning tree of G . Let Gn be the subgraph of G spanned by the

C.T. Ryan and R.L. Smith Operations Research Letters 50 (2022) 655–659
nodes of T n . Note that T n is a MaxST for Gn since Prim’s algorithm
produces a MaxST on the finite graph Gn . This follows from the
classical properties of Prim’s algorithm on finite graphs. Let F n be
the forest of edges consisting of the edges of S that are contained
in Gn . Since edges can always be added from Gn to extend F n to a
spanning tree Sn of Gn , we have

w(F n) ≤ w(Sn) ≤ w(T n)

for all n, where w(H) is the total weight associated with the edges
of subgraph H as defined in (1). Since every node in G is eventu-
ally in T n , we have G = ∪∞

n=1Gn and S = ∪∞
n=1 F n . Then, since edge

weights associated with G are summable, we have

w(S) = lim
n→∞ w(F n) ≤ lim

n→∞ w(T n) = w(T ∗). (3)

Since S was an arbitrary spanning tree of G , we conclude that T ∗
is a MaxST of G . �

It is immediate from (3) that we have optimal value conver-
gence of the iterates of Prim’s algorithm, namely that w(T n) →
w(T ∗) as n → ∞ and in fact w(T n) monotonically converges to
w(T ∗). The sequence of trees T n converges to the tree T ∗ in the
following sense: a sequence of subgraphs Sk of a graph G converges
to a subgraph S in G if there is a positive integer Ke for each edge
e ∈ E so that for all k ≥ Ke we have e ∈ Sk if e ∈ S while e /∈ Sk if
e /∈ S . Indeed, for every edge e ∈ T ∗ , Ke is the minimum value of
n such that e ∈ T n . That is, an edge e enters T n for some n only
when e lies in T ∗ and this edge stays in all remaining iterates. For
additional discussion of topologies on infinite graphs see [16].

We can say more about this value Ke . Without loss of opti-
mality, let node 1 be the initial node of G for Prim’s Algorithm.
Let T ∗ be the MaxST delivered in the limit by Prim’s Algorithm
(as defined in (2) above). For any edge e ∈ T ∗ , let p∗(e) be the
unique path in T ∗ from node 1 up to (and including) edge e. Let
w∗(e) = mine′∈p∗(e) we′ > 0 be the minimum weight of an edge
in the path p∗(e). For every positive real number γ , let E(γ) be
the set of edges in G with weights greater than or equal γ . By
Assumption 2 the set E(γ) is finite. Let N(γ) denote the (finite)
cardinality of E(γ).

Lemma 1. Let e ∈ T ∗ . Then e ∈ T n for all n ≥ N(w∗(e)). That is, Ke ≤
N(w∗(e)).

Proof. Consider the set of edges E(w∗(e)). Since every edge along
the MaxST path p∗(e) to edge e ∈ T ∗ has weight at least w∗(e)
and one of these edges in p∗(e) is a candidate for adding in every
step n of Prim’s Algorithm before all of p∗(e) has been formed in
T n , Prim’s algorithm only adds edges from E(w∗(e)) while p∗(e) is
being formed. Since there are at most N(w∗(e)) edges in E(w∗(e)),
the path p∗(e) (and, in particular, the edge e) must be added in
the first N(w∗(e)) steps of Prim’s algorithm. That is, e ∈ T N(w∗(e)) .
Since edges are only added to the iterates T n (and never removed)
in the execution of Prim’s algorithm, we conclude that e ∈ T n for
all n ≥ N(w∗(e)). �

The following example helps illuminate the result in Lemma 1
in a context where the weights of the edges of the graph decay
geometrically.

Example 3. Suppose G is a locally finite and connected graph with
edges labeled � = 1, 2, Suppose, in addition, that the edge
weights are disciplined by a discounted upper bound as follows:
for some b > 0 and 0 < δ < 1 we have

w� < bδ� (4)
658
for all � = 1, 2, Clearly, this graph satisfies Assumption 2 and so
by Theorem 1, a MaxST T ∗ (given by (2)) exists and can be found
by Prim’s algorithm. We now show that we can determine whether
a given edge e is in T ∗ by only considering a finite subgraph whose
size is a function of w∗(e), b, and δ.

Let γ be a positive real number and let L(γ) be the L satis-
fying bδL = γ . Note that w� ≤ bδ� ≤ bδL(γ) = γ for all � ≥ L(γ),
where the first inequality follows from (4). Observe that E(γ) ⊆
{1, 2, . . . , L(γ)} since only those edges � with � ≤ L(γ) are can-
didates to be in E(γ). Recall that E(γ) is the set of edges of G
with weights greater than or equal γ . Hence, we can conclude that
N(γ) ≤ L(γ).

Note that we have δL(γ) = γ /b or L(γ) = logδ(γ /b). By
Lemma 1, we know that if e ∈ T ∗ then e ∈ T n for n ≥ N(w∗(e))
where N(w∗(e)) ≤ L(w∗(e)) = logδ(w∗(e)/b). That is, e ∈ T n for
n ≥ logδ(w∗(e)/b).

The quantity logδ(w∗(e)/b) is computable in finite time for ev-
ery edge e as a function of w∗(e). �

Note that edge e ∈ T n at step n for every n is based on the
topology and weights associated with the finitely many edges em-
anating from the tree T n . This data, together with that contained in
T n itself, serves as a type of forecast horizon prominent in planning
horizon research [6,11,7–9]. That is, edge e is guaranteed to be a
part of a MaxST independently of any unforecasted data beyond
the tree T n and the edges emanating from it. Thus, for example,
MaxST can be implemented sequentially as we forecast demand
and supply data without the necessity of reworking previous builds
of trees.

4. Comparison with existing work

In the introduction, we briefly mentioned two closely related
papers to our work: [23] and [20]. These papers develop algo-
rithms to find the equivalent of MinSTs and MaxSTs in infinite
matroids. These algorithms find these objects only under certain
conditions, as specified in these papers. For brevity, we will not
introduce the matroid framework in this paper to make these con-
ditions precise. Rather, in order to compare their results to ours,
we will briefly describe their results in the language of infinite
graphs used in this paper.

[23] and [20] develop a generalized version of Kruskal’s algo-
rithm for finding spanning trees. The idea of Kruskal’s algorithm
is roughly as follows: find the maximum (resp. minimum) weight
edge in the graph, and add it to a growing forest, ensuring that
no cycles are introduced as we proceed. For the algorithm to be
finitely implementable, the task of finding edges with maximum
(resp. minimum) weight in the graph needs to be achievable in fi-
nite time. In the case of finding MinSTs, it’s possible that no such
minimum weight edge exists.

For the MaxST problem under our assumptions, a maximum
weight edge can always be found. Let’s briefly explore why this is.
Let � be the label of an arbitrary edge not added yet to the growing
forest (using the labeling of edges defined in the paragraph after
Assumption 2). Since the edge weights are positive and summable,
there exists an edge labeled �′ such that wm ≤ w� for all m ≥ �′ .
Then, the maximum weight edge not in F can be chosen among
the edges in the finite set {1, . . . , � − 1, �, � + 1, . . . , �′ − 1, �′}. In
other words, a maximum weight edge can be found in finite time.

Let’s now compare this with what happens in our generaliza-
tion of Prim’s algorithm. First, the information required to compute
iterates is much less in Prim’s algorithm than in Kruskal’s. Observe
that line 4 of Prim’s algorithm can be executed by only searching
the finitely many edges emanating from the tree iterate T . Given
knowledge of T , the number of edges that need to be considered

C.T. Ryan and R.L. Smith Operations Research Letters 50 (2022) 655–659
is known—at most the sum of degrees of the nodes in T . By con-
trast, although finding an edge to add in Kruskal’s algorithm can
be achieved in finite time, without further assumptions on the
weights (as we did in Example 3) we cannot give a clear bound
on how far into the graph we need to explore. Thus, while both
Prim and Kruskal are greedy, Prim is greedy in a myopic way by
finding heavy edges early in the graph.

This raises a question of how input is provided to the two al-
gorithms. Since the graph is infinite, it is not possible to input all
of the data in the graph in finite time. A finite subset of the data
must be “streamed” to the algorithm as it proceeds. This raises
the consideration of a streaming model of computation [19,10]. We
will not go into the fine details of streaming complexity here, ex-
cept to say that the informational differences between Prim’s and
Kruskal’s algorithms imply that Prim’s can work when a much
smaller amount of finite data is streamed to the algorithm (the
data on edges incident with the current tree iterate). Alternatively,
Kruskal’s algorithm requires forecasting data without an a priori
upper bound for recursive determination of maximal weight edges.

This brings us to a separate point. Whereas the iterate forests
of Kruskal’s algorithm can be disconnected, the iterates of Prim’s
algorithm are always trees. Thus, if our infinite extension of Prim’s
algorithm is finitely terminated, the result is a spanning tree on the
finite graph so far explored by the algorithm. This serves as a par-
tial optimal solution that can be implemented as it is constructed.
This distinction may be important in rolling horizon applications
of spanning tree problems—like establishing communication links
along edges from a source to nodes—where disconnected partial
solutions recommend making links that are not connected to the
source.

Data availability

No data was used for the research described in the article.

Acknowledgements

We thank the associate editor and two reviewers for their help
on improving this paper. In particular, one reviewer alerted us to
the work of [23] on Kruskal’s algorithm for infinite graphs. This
helped us refine the positioning of the paper. Christopher Thomas
Ryan is supported by the Natural Sciences and Engineering Re-
search Council of Canada Discovery Grant RGPIN-2020-06488 and
the UBC Sauder Exploratory Grants Program.

References

[1] Louigi Addario-Berry, Nicolas Broutin, Christina Goldschmidt, Grégory Mier-
mont, The scaling limit of the minimum spanning tree of the complete graph,
Ann. Probab. 45 (5) (2017) 3075–3144.

[2] R. Aharoni, E. Berger, A. Georgakopoulos, A. Perlstein, P. Sprüssel, The max-flow
min-cut theorem for countable networks, J. Comb. Theory, Ser. B 101 (1) (2011)
1–17.

[3] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows: Theory, Algorithms, and
Applications, Prentice Hall, 1993.

[4] David Aldous, J. Michael Steele, Asymptotics for Euclidean minimal spanning
trees on random points, Probab. Theory Relat. Fields 92 (2) (1992) 247–258.

[5] Edward J. Anderson, Andrew B. Philpott, A continuous-time network simplex
algorithm, Networks 19 (4) (1989) 395–425.

[6] James C. Bean, Robert L. Smith, Conditions for the existence of planning hori-
zons, Math. Oper. Res. 9 (3) (1984) 391–401.

[7] James C. Bean, Robert L. Smith, Conditions for the discovery of solution hori-
zons, Math. Program. 59 (1) (1993) 215–229.

[8] Christian Bès, Suresh P. Sethi, Concepts of forecast and decision horizons: ap-
plications to dynamic stochastic optimization problems, Math. Oper. Res. 13 (2)
(1988) 295–310.

[9] Suresh Chand, Vernon Ning Hsu, Suresh Sethi, Forecast, solution, and rolling
horizons in operations management problems: a classified bibliography, Manuf.
Serv. Oper. Manag. 4 (1) (2002) 25–43.

[10] Yi-Jun Chang, Martín Farach-Colton, Tsan-Sheng Hsu, Meng-Tsung Tsai, Stream-
ing complexity of spanning tree computation, arXiv preprint, arXiv:2001.07672,
2020.

[11] Torpong Cheevaprawatdomrong, Irwin E. Schochetman, Robert L. Smith, Alfredo
Garcia, Solution and forecast horizons for infinite-horizon nonhomogeneous
Markov decision processes, Math. Oper. Res. 32 (1) (2007) 51–72.

[12] Nicos Christofides, Worst-case analysis of a new heuristic for the travelling
salesman problem, Technical Report, Carnegie-Mellon University, 1976.

[13] R. Diestel, Graph Theory, 4th edition, Springer, 2010.
[14] Reinhard Diestel, Daniela Kühn, Topological paths, cycles and spanning trees in

infinite graphs, Eur. J. Comb. 25 (6) (2004) 835–862.
[15] Maman Abdurachman Djauhari, Siew Lee Gan, Optimality problem of net-

work topology in stock market analysis, Phys. A, Stat. Mech. Appl. 419 (2015)
108–114.

[16] Agelos Georgakopoulos, Graph topologies induced by edge lengths, Discrete
Math. 311 (15) (2011) 1523–1542.

[17] Ronald L. Graham, Pavol Hell, On the history of the minimum spanning tree
problem, Ann. Hist. Comput. 7 (1) (1985) 43–57.

[18] Daniel Granot, Gur Huberman, Minimum cost spanning tree games, Math. Pro-
gram. 21 (1) (1981) 1–18.

[19] Monika Rauch Henzinger, Prabhakar Raghavan, Sridhar Rajagopalan, Computing
on data streams, in: External Memory Algorithms, vol. 50, 1998, pp. 107–118.

[20] Victor Klee, The greedy algorithm for finitary and cofinitary matroids, in:
Theodore S. Motzkin (Ed.), Combinatorics: Proceedings of Symposia in Pure
Mathematics, 1971, pp. 137–152.

[21] Sevnaz Nourollahi, Archis Ghate, Duality in convex minimum cost flow prob-
lems on infinite networks and hypernetworks, Networks 70 (2) (2017) 98–115.

[22] Alice Paul, Daniel Freund, Aaron Ferber, David B. Shmoys, David P. Williamson,
Budgeted prize-collecting traveling salesman and minimum spanning tree
problems, Math. Oper. Res. 45 (2) (2020) 576–590.

[23] Richard Rado, Note on independence functions, Proc. Lond. Math. Soc. 3 (1)
(1957) 300–320.

[24] Christopher Thomas Ryan, Robert L. Smith, Marina A. Epelman, A simplex
method for uncapacitated pure-supply infinite network flow problems, SIAM
J. Optim. 28 (3) (2018) 2022–2048.

[25] Thomas C. Sharkey, H. Edwin Romeijn, A simplex algorithm for minimum-cost
network-flow problems in infinite networks, Networks 52 (1) (2008) 14–31.

[26] Kenneth J. Supowit, David A. Plaisted, Edward M. Reingold, Heuristics for
weighted perfect matching, in: ACM STOC Symposium on Theory of Comput-
ing, 1980, pp. 398–419.
659

http://refhub.elsevier.com/S0167-6377(22)00130-4/bibC653927BBA6F4A37EED9A0535D883494s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bibC653927BBA6F4A37EED9A0535D883494s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bibC653927BBA6F4A37EED9A0535D883494s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib84AC2BD26F6BE55DF4DA6AFDF67A4BFFs1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib84AC2BD26F6BE55DF4DA6AFDF67A4BFFs1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib84AC2BD26F6BE55DF4DA6AFDF67A4BFFs1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bibAA35AEEEB9DAF1E16750181249A5E709s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bibAA35AEEEB9DAF1E16750181249A5E709s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib168F85F8B265C3D667C0ADC268C64CEAs1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib168F85F8B265C3D667C0ADC268C64CEAs1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bibA5C9BF7400438D0622D9E94B93CE0035s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bibA5C9BF7400438D0622D9E94B93CE0035s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib3664C3A31D8529716BB754108CEE25E1s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib3664C3A31D8529716BB754108CEE25E1s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bibC4FD93E48C0DFDC9405090372CA0BD1Cs1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bibC4FD93E48C0DFDC9405090372CA0BD1Cs1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib265A49044E82FE953C27E2B525D0DC51s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib265A49044E82FE953C27E2B525D0DC51s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib265A49044E82FE953C27E2B525D0DC51s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib56F5A892623A0694AFFB2A171688422Bs1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib56F5A892623A0694AFFB2A171688422Bs1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib56F5A892623A0694AFFB2A171688422Bs1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bibB9A96FA0ECD190712F33D9E4AC5FF8C0s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bibB9A96FA0ECD190712F33D9E4AC5FF8C0s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bibB9A96FA0ECD190712F33D9E4AC5FF8C0s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib2583FEAE8B3A55C665E08DE1AC587F43s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib2583FEAE8B3A55C665E08DE1AC587F43s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib2583FEAE8B3A55C665E08DE1AC587F43s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bibA227ABBBE925834C2996C18D31FCDE35s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bibA227ABBBE925834C2996C18D31FCDE35s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib9FA4F2D433F8C45B42E819C50F2B640As1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bibE50239F28638F4333B7913AE70689C04s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bibE50239F28638F4333B7913AE70689C04s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib736D7E874E4CE9FC4140459D26EF4C3Es1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib736D7E874E4CE9FC4140459D26EF4C3Es1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib736D7E874E4CE9FC4140459D26EF4C3Es1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib11FF63ABD6EFFAB3A27ECB8B86D0CFD7s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib11FF63ABD6EFFAB3A27ECB8B86D0CFD7s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib5BAE567F10AD4CAEB3D30B147D7115B6s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib5BAE567F10AD4CAEB3D30B147D7115B6s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib69C908D77613056FC6DA4A5BB90BCD3Bs1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib69C908D77613056FC6DA4A5BB90BCD3Bs1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bibD6F485A79620143DD92718F6A17C9C22s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bibD6F485A79620143DD92718F6A17C9C22s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib983F8E946F8CBD300F49F9D66BAEF6DDs1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib983F8E946F8CBD300F49F9D66BAEF6DDs1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib983F8E946F8CBD300F49F9D66BAEF6DDs1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bibD69DD93A8F7089662A1C0F2F23FD2E8Es1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bibD69DD93A8F7089662A1C0F2F23FD2E8Es1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bibA3E40689B60944BB53745D6AA53B325Bs1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bibA3E40689B60944BB53745D6AA53B325Bs1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bibA3E40689B60944BB53745D6AA53B325Bs1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bibC6290880E3EC6BB61DA9882018844279s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bibC6290880E3EC6BB61DA9882018844279s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib42F001DB5B1775405968916F38D1D5A6s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib42F001DB5B1775405968916F38D1D5A6s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib42F001DB5B1775405968916F38D1D5A6s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib8524C656D81221794D6AC454AF08DF76s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib8524C656D81221794D6AC454AF08DF76s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib5764552D7E9026AD224E3F43BE4E8F46s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib5764552D7E9026AD224E3F43BE4E8F46s1
http://refhub.elsevier.com/S0167-6377(22)00130-4/bib5764552D7E9026AD224E3F43BE4E8F46s1

	A greedy algorithm for finding maximum spanning trees in infinite graphs
	1 Introduction
	2 The minimum and maximum spanning tree problems
	2.1 Basic definitions
	2.2 On the existence of spanning trees

	3 Greedy algorithms
	3.1 Greedy algorithms for minimum spanning trees
	3.2 A greedy algorithm for maximum spanning trees

	4 Comparison with existing work
	Data availability
	Acknowledgements
	References

